skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chuyang Ke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we study the problem of inference in high-order structured prediction tasks. In the context of Markov random fields, the goal of a high-order inference task is to maximize a score function on the space of labels, and the score function can be decomposed into sum of unary and high-order potentials. We apply a generative model approach to study the problem of high-order inference, and provide a two-stage convex optimization algorithm for exact label recovery. We also provide a new class of hypergraph structural properties related to hyperedge expansion that drives the success in general high-order inference problems. Finally, we connect the performance of our algorithm and the hyperedge expansion property using a novel hypergraph Cheeger-type inequality. 
    more » « less
  2. Animashree Anandkumar (Ed.)
    In this paper we propose an algorithm for exact partitioning of high-order models. We define a general class of m-degree Homogeneous Polynomial Models, which subsumes several examples motivated from prior literature. Exact partitioning can be formulated as a tensor optimization problem. We relax this high-order combinatorial problem to a convex conic form problem. To this end, we carefully define the Carathéodory symmetric tensor cone, and show its convexity, and the convexity of its dual cone. This allows us to construct a primal-dual certificate to show that the solution of the convex relaxation is correct (equal to the unobserved true group assignment) and to analyze the statistical upper bound of exact partitioning. 
    more » « less